

IX International School and Conference on Photonics - PHOTONICA2023

In vivo multiphoton imaging of a filamentous fungus Phycomyces blakesleeanus: the effect of small ambient temperature increase on mitochondrial morphology and lipid droplets density

<u>T. Pajic¹</u>, S. Kozakijevic¹, A. J. Krmpot³, M. Zivic¹, N. V. Todorovic⁴ and M. D. Rabasovic³

¹Faculty of Biology, University of Belgrade, Serbia ²Institute of Physics Belgrade, University of Belgrade, Serbia ³Institute for Biological Research "Siniša Stanković", University of Belgrade, Serbia

e-mail: tpajic@bio.bg.ac.rs

Introduction

Mitochondrial function, and consequently cellular metabolic status and fitness of a cell, is tightly linked to the dynamic changes of mitochondrial morphology, including mitochondrial fusion, fission and mitophagy [1]. Lipid droplets (LDs) can be in close contact with mitochondria, and accumulate autophagy or mitophagy generated material during the reparatory processes [2]. The effect of increased ambient temperature on mitochondrial morphology and LDs density in living cells of the filamentous fungus Phycomyces blakesleeanus was investigated.

in vivo imaging of mitochondria and lipid droplets **two-photon** For excitation fluorescence (TPEF) microscopy was used.

Two-photon imaging set-up Cam. TPEF PMT BS/M Yb:KGW laser GSM Pulse duration – 200 fs Repetition rate – 80 MHz MDM Wavelength – 1040 nm L2: VNDF Beam expander Obj. Ti:Sa laser Sh BC Pulse duration – 160 fs Stepper Driver Repetition rate – 76 MHz <motor Wavelength – 700-950 nm Con. Driver PD 🛙 Driver Light source AD/DA out

Advantages:

- *High contrast images*
- 3D imaging in high resolution
- Reduced photodamage and photobleaching of the sample using IR ultrafast pulsed lasers \rightarrow possibility of extended in vivo imaging

Two-photon exc. (800 nm) of Rhodamine 123

dyes Rhodamine 123 stains active mitochondria in living cells. Dye entry depends on the mitochondrial membrane potential.

Two-photon exc. (1040 nm) of Nile Red dye

TPEF imaging of *Phycomyces blakesleeanus* live hyphae

BioPhysLab@

3D model (21 slices/images, 0.9 um apart along the z axis) of **tubular mitochondria** (22ºC) in live hypha

Merged 2D image of Rh123 (blue signal) and NR (red signal) in same hypha

Schematic drawing of NLSM setup., L1 and L2 – lenses of 1:1 beam expander for recollimation, BC – beam combiner, VNDF – motorized variable neutral density filter, Sh – shutter, GSM - galvanometer-scanning mirrors, L3 and L4 - lenses of 1:3.75 beam expander, MDM - main dichroic mirror (cut-off 700 nm), Con.- aspheric condenser lens, TL - tube lens, BS/M - beam splitter or mirror toggle, F - VIS filter 400–700 nm + bandpass interference filter 530/43 (for Rh123) or 570LP (NR), L5 - focusing lens, TPEF PMT - photomultiplier tube for TPEF signal, L – lens, PD – photodiode, AD/DA - acquisition card.

Nile Red stains cellular lipid droplets

3D model (15 slices/images, 0.9 um apart along the z axis) of **lipid droplets** (25°C) in live hypha

TPEF images of mitochondrial morphology in *Phycomyces blakesleeanus* hyphae

TPEF images analysis for surface area calculation by *Particle Size Analsys* method

Vital

8

The effect of increased temperature on the abundance of mitochondrial morphology types defined per individual cell

All images were stained with 5 µM Rh123. Color intensity bar for the TPEF signal: dark blue – lowest TPEF signal, dark red – highest TPEF signal. The average laser power in the sample plane - 4-5 mW at 800 nm.

84 36 40% 20% 24 0% 22ºC 25ºC Intermediate Tubular Elongated tubules Round Fragmented $N_{22} = 56, N_{25} = 42$

Conclusions	
 Changes in mitochondrial morphology were induced by a small temperature change. An increase of 3°C had a dramatic effect on mitochondrial morphology, inducing the appearance of a predominantly tubular morphology. The total area percentage of mitochondria showed an increasing trend when grown at 25°C. Increasing the ambient temperature to 25°C induced a statistically significant increase in the percentage of hyphal area occupied by LDs from 2.9 ± 1.6 to 4.7 ± 2.2. The observed response to the small temperature increase points to the physiological adaptation of hyphal metabolism. 	REFERENCES [1] K. Ma et al., Front. Cell Dev. Biol. 8, 467 (2020). [2] M. Long, T.G. McWilliams, Autophagy 19, 724 (2023).

Acknowledgment

This work was supported by the Ministry of Science, Technological Development and Innovations, Republic of Serbia [contract numbers: 451-03-47/2023-01/200178 and 451-03-47/2023-01/200007]; The Project Advanced Biophysical Methods for Soil Targeted Fungi-Based Biocontrol Agents - BioPhysFUN [Grant number 4545] from Program OEVELOPMENT – Green program of cooperation between science and industry, Science Fund of the Republic of Serbia; the Project HEMMAGINERO [Grant number 6066079] from Program PROMIS, Science Fund of the Republic of Serbia; and the Institute of Physics Belgrade, through the grant by the Ministry of Science, Technological Development and Innovations of the Republic of Serbia.